A Novel Type of Photosubstitution of [*fac*-Re(bpy)(CO)₃Br] (bpy = 2,2'-bipyridine) with **P(OR)₃** in the Presence of Triethylamine: Efficient Formation of $[Re(bpy)(CO)_2 \{P(OR)_3\}_2] + Br$

Chyongjin Pac,* Sadamichi Kaseda, Koichiro lshii and Shozo Yanagida

Department of Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Photochemical ligand substitution of $[fac-Re(bpy)(CO)_3Br]$ with P(OEt)₃ in the presence of triethylamine quantitatively gave $[Re(bpy)(CO)_2 \{P(OEt)_3\}_3]+Br$ - without the intervention of a mono-substituted product.

The photo-redox chemistry of $\frac{f}{ac}$ -Re(L)(CO)₃X]ⁿ⁺ (*n* = 0 or 1; $L =$ diimine ligand; $X =$ neutral or anionic monodentate ligand) in the presence of an aliphatic tertiary amine is of interest associated with the photoreduction of $CO₂$ to CO in N , N -dimethylformamide (DMF),¹ the photocatalytic H_2 evolution in tetrahydrofuran (THF)² or a heterogeneous suspension of hectorite clay mineral,³ and the photoreduction of pyridyl ketones to the corresponding alcohols.4 A key pathway of these photoredox reactions is thought to be the loss of X or CO following electron transfer from an amine to the luminescent state of the Re' complexes.'-5 It is known that one-electron reduction of Re1 complexes can induce the substitution of X with another ligand, but not that of a CO ligand. **1-6-7** In the present investigation, we have found a novel type of photosubstitution of $[fac-Re(bpy)(CO)_3Br]$ 1 with $P(OR)$ ₃ in the presence of triethylamine (TEA) that gives $[Re(bpy)(CO)₂{P(OEt)₃}₂]+Br-2 in high yields.$

Irradiation of a deaerated solution of 1 (1-5 mmol dm⁻³), TEA (1.0 mol dm⁻³), and P(OEt)₃ (20 mmol dm⁻³) at >400 nm gave **2** in ca. 90% yield along with the evolution of 0.6-0.8 equivalents of CO in each solvent of acetonitrile, DMF, methanol or THF. The formation of **2** was linear with irradiation time up to ca. *30%* conversion, while no other substituted Re¹ product was detected by HPLC at all. Therefore, **2** appears to be the exclusive primary photoproduct. It was confirmed that **2** is not formed upon refluxing of a THF or acetonitrile solution in the dark nor upon irradiation in the absence of TEA. With other $P(OR)$ ₃ (R = Me, Bu and Ph), the photochemical ligand substitution of **1** again occurs to give the corresponding bis(phosphito)Re^I complexes in $70-90\%$ yields.† The quantum yields for the

 $\ddot{\text{ } }$ Details of the photoproducts with other P(OR)₃ will be described in a full paper. Satisfactory elemental analysis of **2** was obtained.

formation of **2** at 405 nm are 0.71 for a degassed acetonitrile solution and 5.3×10^{-2} for a degassed THF solution of 1 (1.0) mmol dm⁻³), TEA (1.0 mol dm⁻³) and P(OEt)₃ (20 mmol dm^{-3}).

The structure of **2** was deduced from its spectroscopic properties;† λ_{max} (CH₂Cl₂) 378 nm (ε 4800); v_{max}/cm⁻¹ (KBr) 1945/1870 (CO ligands) and 940/780 (P-0); mass spectrum (FAB) *m/z* 731/729 (M⁺ - Br); ¹H NMR (400 MHz; CDCl₃) (dd, 4/4'-H), 8.31 (d, 3/3'-H) and 9.55 (d, 6/6'-H); ¹³C NMR 61.03 (t, $6 \times CH_3$), 3.77 (q, $6 \times CH_2$), 7.47 (ddd, 5/5'-H), 8.31 (400 MHz; CDCl₃) δ 15.95 (CH₃), 61.47 (CH₂), 126.27 $(3/3'-C)$, 126.57 $(5/5'-C)$, 139.90 $(4/4'-C)$, 152.17 $(6/6'-C)$, 156.51 (3/3'-C) and 199.30 (CO); 31P NMR (160 MHz; CDC13) δ (vs. D_3PO_4) 116.99. The NMR data clearly indicate that 2 has a structure of $C_{2\nu}$ symmetry, *i.e.* the axial *trans* configuration of the two $P(OEt)$ ₃ ligands.

The present photosubstitution reaction should be initiated by electron transfer from TEA to the luminescent state of 1,4 since the luminescence of 1 is quenched by TEA at 1×10^8 dm³ mol⁻¹ s⁻¹ in acetonitrile and 5×10^7 dm³ mol⁻¹ s⁻¹ in THF and since no reaction occurs in the absence of TEA. On the other hand, no luminescence quenching was observed with P(OEt)₃. The remarkable solvent dependence of quantum yield would arise, at least in part, from more efficient formation and a longer lifetime of free **1-** in more polar acetonitrile compared with THF. In general, the one-electron reduction of $[Re(L)(CO)_3X]^{n+}$ ($n = 0$ or 1) results in the exchange of X with another ligand Y to give $[Re(L)(CO)₃Y]ⁿ⁺$ $(n = 0 \text{ or } 1)$ as the final product after the loss of an electron from the substituted 19-electron species.^{1,6,7} If the double substitution of the Br⁻ and CO ligands with $P(OR)$ ₃ proceeds by the initial loss of the Br- ligand *via* **I-,** the monosubstituted 19-electron species $[Re(bpy)(CO)_{3} {P(OR)_{3}}]$ should undergo the substitution of the axial CO ligand with

another $P(OR)$ ₃ before the loss of an electron. Alternatively, the double substitution would be the consequence arising from the initial substitution of a CO ligand with $P(OR)$ ₃ *via* **1**^{$-$}

Although details of the mechanism are still unclear, it should be noted that the evolution of CO in a CO_2 -saturated DMF solution in the presence of $P(OEt)$ ₃ was as efficient as that in its absence at an early stage of the reaction but levelled off because of the efficient formation of **2** ineffective *to* the $CO₂$ photoreduction by TEA. The amount of CO evolved in the presence of $P(OEt)$ ₃ reached 140% based on the quantity of **1** used, twice as high as that in an Ar-purged solution, suggesting that $CO₂$ might react with $1-$ competitively with the $P(OEt)$ ₃ substitution or with an intermediate involved in the ligand substitution. On the other hand, $P(OEt)_{3}$ inhibits completely the photocatalytic evolution of H_2 in THF² and mostly the photoethylation of the bpy ligand by TEA.* Presumably, P(OEt), would trap **1-** before the generation of a hydride complex and much faster than a radical-coupling reaction of 1⁻ with Et₂NCHMe generated by the loss of a proton from the cation radical of TEA.

The photochemical ligand substitution with $P(OR)$ ₃ provides a convenient method for the preparation of the bis(phosphito)ReI complexes and a possible mechanistic probe for the redox photochemistry of **1** and related Re1 complexes.

This work was supported by Grant-in-Aid for Special Research Project from the Ministry of Education, Science and Culture of Japan (No. 63104001).

Received, 23rd October 1990; Com. 0/04771 F

References

- 1 J. Hawecker, J.-M. Lehn and R. Ziessel, J. *Chem. SOC., Chem. Commun.,* 1983, 536; *Helv. Chim. Acta,* 1986, **69,** 1990.
- 2 C. Pac, K. Ishii and **S.** Yanagida, *Chem. Lett.,* 1989, 765.
- 3 **M.** Tajik and C. Detellier, J. *Chem. SOC., Chem. Commun.,* 1987,
- 1824. 4 S. M. Fredericks and M. **S.** Wrighton, J. *Am. Chem. SOC.,* 1980,
- **102,** 6166.
- *5* C. Kutal, **A.** J. Corbin and G. Ferraudi, *Organometallics,* 1987, **6,** 553; C. Kutal, M. **A.** Weber, G. Ferraudi and D. Geiger, *Organometallics,* 1985, **4,** 2161; K. Kalyanasundaram, J. *Chem. SOC., Faraday Trans. 2,* 1986, 2401.
- 6 **B.** P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining and T. J. Meyer, J. *Chem. SOC., Chem. Commun.,* 1985, 1414.
- 7 D. P. Summers, J. C. Luong and M. S. Wrighton, J. *Am. Chem.* SOC., 1981, **103,** 5238.
- 8 0. Ishitani, I. Namura, S. Yanagida and C. Pac, J. *Chem. SOC., Chem. Commun.,* 1987, 1153.